Package: gainML 0.1.0
gainML: Machine Learning-Based Analysis of Potential Power Gain from Passive Device Installation on Wind Turbine Generators
Provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators. H. Hwangbo, Y. Ding, and D. Cabezon (2019) <arxiv:1906.05776>.
Authors:
gainML_0.1.0.tar.gz
gainML_0.1.0.zip(r-4.5)gainML_0.1.0.zip(r-4.4)gainML_0.1.0.zip(r-4.3)
gainML_0.1.0.tgz(r-4.4-any)gainML_0.1.0.tgz(r-4.3-any)
gainML_0.1.0.tar.gz(r-4.5-noble)gainML_0.1.0.tar.gz(r-4.4-noble)
gainML_0.1.0.tgz(r-4.4-emscripten)gainML_0.1.0.tgz(r-4.3-emscripten)
gainML.pdf |gainML.html✨
gainML/json (API)
# Install 'gainML' in R: |
install.packages('gainML', repos = c('https://hhwangbo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hhwangbo/gainml/issues
Last updated 5 years agofrom:2852835bba. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:analyze.gainanalyze.p1analyze.p2arrange.databootstrap.gainquantify.gain